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Abstract. The charge-carrier transport properties of ultrathin metallic films are analysed with ab initio
methods using the density functional theory (DFT) on free-standing single crystalline slabs in the thickness
range between 1 and 8 monolayers and compared with experiments for Pb films on Si(111). A strong
interplay between bandstructure, quantised in the direction normal to the ultrathin film, charge-carrier
scattering mechanisms and magnetoconduction was found. Based on the bandstructure obtained from the
DFT, we used standard Boltzmann transport theory in two dimensions to obtain results for the electronic
transport properties of 2 to 8 monolayers thick Pb(111) slabs with and without magnetic field. Comparison
of calculations and experiment for the thickness dependence of the dc conductivity shows that the dominant
scattering mechanism of electrons is diffuse elastic interface scattering for which the assumption of identical
scattering times for all subbands and directions, used in this paper, is a good approximation. Within this
model we can explain the thickness dependences of the electric conductivity and of the Hall coefficient as
well as the anomalous behaviour of the first Pb layer.

PACS. 73.50.Jt Electronic transport phenomena in thin films: Galvanomagnetic and other magnetotrans-
port effects – 73.61.At Electrical properties of specific thin films: Metals and metallic alloys – 73.20.At
Electron states at surfaces and interfaces – 71.15.Mb Density functional theory

1 Introduction

Spatial confinement of the electron motion in the direction
normal to the film causes quantisation of the perpendicu-
lar momentum and consequently a discrete set of electron
energy subbands. This leads to a variety of quantum-size
effects (QSE), like oscillation of the charge-carrier density,
Fermi energy, electrical conductivity and of the Hall coeffi-
cient as a function of film thickness, to mention only a few
of them. Although appreciable progress has been made in
understanding the QSE, many aspects are still unclear.
Here we will discuss the electronic band structure and its
consequences on the electronic charge transport with and
without magnetic field in ultrathin films.

The classical size effect on the conductivity of thin
films is explained with the Fuchs and Sondheimer theo-
ries [1–3] which relate the electrical conductivity in the
film and surface or interface scattering. Their approach is
based on the Boltzmann transport equation for bulk elec-
trons that are partially reflected and partially scattered
on the film surfaces. Assuming diffuse and elastic surface
scattering they find a linear thickness dependence of the
conductivity, often in agreement with experiments even for
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film thicknesses d much smaller than the electron elastic
mean free path �, although the picture of 3-dimensional
electron motion with specular reflections at the surface
or interface makes sense only when d � �. A linear d-
dependence of the conductivity has also been obtained by
Camblong and Levy [4], who used the Kubo formalism
and assumed a free-electron model with diffuse scattering
on the boundaries.

A quantum size effect is the oscillation of the con-
ductivity with thickness d, observed in the layer-by-layer
growth mode of thin films. These oscillations have the pe-
riod of the perpendicular lattice spacing and are caused
by the roughness of films with partial monolayers that are
not closed. For film thicknesses d � � the discrete na-
ture of the electron energy levels becomes essential and
other quantum-size induced effects emerge on top of the
layer-by-layer induced oscillations. The transport of free
electrons in confined geometries has been discussed by
Sandomirskii [5] and later by Trivedi and Ashcroft [6].
They predicted a saw-tooth like oscillations of the in-plane
conductivity with thickness. The period of the oscillation
is equal to half the Fermi wavelength λF [6]. In reality,
however, the film thickness increases in monolayer steps
and not continuously as assumed in the above models.
Therefore, one expects a range of thicknesses with large
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QSE amplitudes when d is close to a multiple of λF /2,
separated by regions with small QSE.

Apart from the theoretical attempts mentioned above,
there have been several others which describe charge
transport in thin films [7–13]. Common to most of them is
the assumption of free electrons. However, models based
on free electrons break down if they are used to explain the
galvanomagnetic phenomena (like the Hall effect), which
depend on details of the band structure and on the elec-
tron/hole ratio, as will be shown below. More quantita-
tive models are needed that take into account the detailed
band structure of the film under size quantisation.

In this paper we address the general issue of charge-
carrier scattering, transport and Hall effect in ultrathin
metallic films. The Hall coefficient has the advantage that
it is more sensitive to the QSE-mediated changes in the
bandstructure and less sensitive to the details of the scat-
tering mechanisms than the electrical or Hall conductiv-
ities. The model calculations will be performed on free-
standing Pb(111) slabs and compared with experiments
for Pb on Si(111). As substrates, semiconductors are used
because they have no electron states at the Fermi energy
to which the metal conduction electrons, responsible for
the charge transport, could couple. Semiconductors are
also good insulators in the relevant temperature range
(up to 150 K) so that they can be considered as an in-
sulating substrate. Depending on substrate and annealing
conditions, both crystalline and semi-amorphous films can
be grown. This is important because it allows a compar-
ison of magnetoconductive properties of crystalline and
non-crystalline films. For the Hall coefficient the degree of
crystallinity is of minor importance.

The bandstructure of free-standing ultrathin Pb(111)
films has been calculated by Saalfrank [14] and more re-
cently by Matrezanini et al. [15]. They discussed the role,
QSE has on the oscillations of the Fermi energy εF and of
the density of electron states nF at εF but did not consider
the charge-carrier transport phenomena. Charge transport
properties at low temperatures are dominated by scat-
tering at bulk and surface imperfections. For most ultra-
thin metallic films with d < �, scattering at the surface
roughness is much stronger than scattering at bulk imper-
fections, the electrical conductivity is limited by rough-
ness of the boundaries to the vacuum and to the sub-
strate. The variation of the conductivity with thickness
d of ultrathin rough metallic films has been investigated
by Fishman and Calecki [9,10]. In case of free electrons
and uncorrelated surface height fluctuations, they obtain
a d2.1 thickness dependence of the “residual” conductiv-
ity σ = [ρ(d) − ρ(∞)]−1, where ρ(d) is the in-plane film
resistivity, and a Hall coefficient RH proportional to d.
None of these dependences agrees with the experiments
on ultrathin Pb films on Si(111), where an approximately
linear thickness dependence of σ and a strongly oscillating
thickness dependence of RH has been reported [16–18].

2 The model

We treat metallic films as free-standing, ideally ordered
slabs. The density functional theory (DFT) is applied to

calculate the electronic band structure, density of states
and Fermi lines. Using the Boltzmann transport equation
in the relaxation time approximation and in two dimen-
sions we then calculate the transport properties of ultra-
thin slabs. We will see that most of the charge-carrier
transport properties as a function of layer thickness d are
already reproduced in such approach.

The basis of our charge-transport calculations are the
electron band structures. In a slab, the translational sym-
metry in the direction normal to the slab is broken, k⊥
is no longer a good quantum number, and each band
splits into d discrete subbands. One can imagine these sub-
band states as standing waves between the two surfaces.
Of course, the subbands transform into a continuum of
surface-projected bulk band states in the limit d → ∞.

The question arises, when do we have to treat the elec-
tron states as confined in a slab and when as bulk states.
The decisive quantity is the electron coherence length �c.
If �c � d, it is equivalent to the bulk mean free path and
is determined by bulk scattering centres. When the coher-
ence length exceeds the slab thickness, �c > d, the elec-
trons between the two slab boundaries behave as standing
waves in the normal direction and as extended states in
the other two directions. Therefore, in case of ultrathin
slabs, one has to distinguish between the electron coher-
ence length in the direction normal to the film, �c, and
the electron mean free path in the plane of the film, �mfp,
which is predominantly limited by the surface roughness.

The DFT calculations were performed on 1 to 8 mono-
layers thick, (111)-oriented Pb slabs, separated by ∼10 Å
of vacuum, and with periodic boundary conditions. If the
vacuum layer were too thin, we would observe dispersion of
the electron bands in the z direction. Indeed, we observed
no dispersion in the occupied bands. The electron band
energies and the total energy were calculated ab initio
with the full-potential linearised augmented plane-wave
method in the local-density approximation [19] as imple-
mented in the WIEN2k code [20]. A mixed basis set of
augmented plane waves plus local orbitals (APW+lo) [21]
for low orbital momenta (l ≤ 2) and linearised augmented
plane waves (LAPW) for all the higher orbital momenta
were used. The spin-orbit interaction was included selfcon-
sistently by applying the second-variational method and
using the scalar-relativistic eigenfunctions as basis [22].
The Pb muffin-tin radius was set to 2.6 a.u. and a tetrahe-
dral mesh of about 600 k-points in the irreducible part of
the Brillouin zone, Figure 1, was used in the self-consistent
electronic structure calculations. The kinetic-energy cutoff
was set to Ewf

max = 9.5 Ry and the plane-wave expansion
cutoff to Epw

max = 196 Ry. Later, in the calculation of Fermi
lines and conductivities, we used a mesh with about 4000 k
points in the irreducible part of the Brillouin zone.

First, the energy of bulk Pb FCC crystal was min-
imised to find the equilibrium bulk lattice constant,
acalc = 4.88 Å, which is 1.4% smaller than the experimen-
tal room-temperature value aexp = 4.95 Å and 3% smaller
than the calculated value reported by Materzanini et al.
who used the Cambridge Serial Total Energy Package [15].
For the slab calculations, we used the corresponding
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Fig. 1. Irreducible part (dark grey) of the two-dimensional
hexagonal first Brillouin zone of a free-standing slab. For the
slab on a substrate the in-plane mirror symmetry is broken and
the irreducible Brillouin zone comprises both grey areas.

in-plane hexagonal lattice constant, a = acalc/
√

2 = 3.45
Å. Except for d = 1 ML, no visible change in the band-
structure is observed if either the experimental lattice con-
stant was used in the simulations or if the lattice was un-
relaxed.

The transport properties are calculated using the
Boltzmann transport equation for two-dimensional sys-
tems in the relaxation-time approximation. The two-
dimensional description is necessary when the charge-
carrier mean free path exceeds the slab thickness. As we
shall see later, this condition is fulfilled for all but the
thinnest (d = 1) slabs. For polycrystalline or amorphous
metallic films the transport properties are isotropic in the
plane of the surface and the conductivity is [23]

σ0 =
e2

4π2�d

∑
n

∮
d�n τn(εF )|vn(εF )| (1)

where e is the electron charge, vn the group velocity of
an electron in the subband n at the Fermi energy εF and
τn(εF ) its relaxation time. The sum runs over all subbands
crossing the Fermi energy and the integral is along each
Fermi line. The spin degeneracy is included in the prefac-
tors. The Hall conductivity is [23]

σH =
e3
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The mechanisms influencing the relaxation time are
elastic scattering on bulk imperfections and elastic scatter-
ing on rough surfaces, 1/τ = 1/τb +1/τs. Inelastic scatter-
ing on phonons can be neglected if the conductivities are
investigated at low temperatures. In ultrathin films, the
main scattering mechanism is elastic scattering on surface
roughness for which τn(εF ) is given by

1
τn(εF )

=
2π

�

∑
n′k′

|〈n′k′|Hi|nk〉|2δ(εn′(k′) − εF ) (3)
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Fig. 2. Interlayer spacings dij (in Å) of relaxed symmetric
Pb(111) slabs as a function of slab thickness. The lowest in-
dices correspond to the surface layers. Dashed line indicates
the relaxed bulk spacing.

where 〈n′k′|Hi|nk〉 is the scattering matrix element. For
small, uncorrelated islands, the matrix element is inde-
pendent of n and k, it is equal to U2ρs/Sd2 where U is
the strength and ρs the surface density of the scattering
centres [10]. S is the area of the film. If this situation is
fulfilled, the scattering is diffuse [4] and the scattering rate
simplifies to

1
τ

=
U2ρs

2π�2d2

∑
n

∮
d�n

|vn(εF )| . (4)

In this case the charge-carrier momentum is lost com-
pletely, scattering causes transitions between all subbands
that cross εF and also the relaxation time of the electrons
at εF is independent of the subband index n and electron
momentum k. In general, vF is only weakly k-dependent
so that τ ∝ d2/L results, where L is the length of all Fermi
lines. As we shall see later, L and therefore also τ and σ0

are approximately linear functions of d.

3 Results

We start our analysis by presenting the results of the lat-
tice relaxation and bandstructure calculations of relaxed
Pb(111) slabs. The thickness dependence of the interlayer
spacings is shown in Figure 2. The topmost layer relaxes
always inwards. In addition, we find a quantum-size in-
duced oscillation of dij as a function of thickness; we ob-
serve simultaneous inward relaxation of all investigated
layers for d = 2, 5 and 7 ML thick films. Whereas the
relaxations of the topmost layers agree quite well with the
values reported in reference [15], the relaxations of the
inner layers differ. Our spacings d23 show similar QSE os-
cillations as in reference [15], but they are systematically
smaller (∼2% of dbulk, dbulk is the bulk interlayer spacing
in the (111) direction). The amplitude of the QSE oscil-
lations in d34 is ∼1.5% of dbulk and is thus comparable to
the amplitude of d34 in reference [15], but with opposite
phases as a function of layer thickness.
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Fig. 3. Thickness dependence of the excess slab energies Eex

of relaxed symmetric Pb(111) slabs.

Figure 3 shows the excess slab energies Eex = Eslab −
dEbulk, where Eslab is the total energy of a slab and
Ebulk = −41834.809 Ry the energy/atom in the bulk.
Clearly seen are the QSE-induced oscillations in Eex with
minima for 2, 4 and presumably also 8 ML thick slabs,
in partial agreement with the DFT calculations of refer-
ence [15].

The electron energy bands along the main symmetry
directions of the two-dimensional hexagonal Brillouin zone
for d = 4 are shown in Figure 4. Each band is split into
d subbands which do not cross because of spin-orbit in-
teraction. The number of subbands crossing εF is roughly
proportional to d. This property will have direct conse-
quences on τ and on the conductivities. The points of
subband crossings with εF form two-dimensional closed
loops, i.e., Fermi lines. Depending on the occupancy of the
states enclosed by a Fermi line we have hole- or electron-
like carriers. Their ratio will play a crucial role in deter-
mining the sign of the Hall coefficient RH = σH/σ2

0 . Also
shown in Figure 4 is the electron density of states. Close
to the bottom of the subbands the density of states has
steps, specific for parabolic bands in two dimensions. Pro-
portional to d is also the total length of Fermi lines, L,
in the two-dimensional Brillouin zone, see Figure 5. This,
together with diffuse scattering, is the main reason why
σ0 is approximately proportional to d.

We next calculated the relaxation time, equation (4),
assuming a potential depth 3 eV, a terrace height one ML
(∼3 Å), a terrace area 100 Å2 (U = 900 eVÅ3) and a ter-
race density ρs = 10−4 Å−2, see Figure 6. These numbers
were chosen in order to simulate closely the experimental
situation described in reference [24] and to obtain a close
fit to the experimental values for σ0 and RH [24]. We note
that elastic scattering at the surfaces causes transitions
between all subbands that cross the Fermi energy. The
summation over all final states in the scattering rate (4)
causes τ ∝ d. As we see from Figure 6, τ ∝ d−1 describes
the thickness dependence better. The reason is found in
the details of the bandstructure (see below). The devia-
tions from linearity at d = 3, 6 and 8 ML appear when the
Fermi energy coincides with a local peak in the electron
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Fig. 4. Calculated bandstructure (left) and density of states
(right) of a free-standing 4 ML thick Pb(111) film. The shaded
areas in the bandstructure represent the surface-projected bulk
electron energy bands, whereas the shaded areas in the density-
of-states are the occupied states of the 4 ML thick Pb film.
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Fig. 5. Thickness dependence of the total length L of calcu-
lated Fermi lines in the two-dimensional Brillouin zone. Dashed
line is a linear fit through the the calculated points. Also shown
is the calculated Fermi-line length of a d = 1 ML thick film,
pseudomorphous with the Si(111) substrate.

density of states, thus opening more channels for elastic
scattering. Also shown in Figure 6 is the “experimental”
value τexp,

τexp =
4π2

�d σexp
0

e2
∮

dl|vn(εF )| , (5)

obtained from equation (1) by combining σexp
0 from ref-

erence [18] with the calculated value for
∮

dl|vn(εF )|. We
also calculated σ0, Figure 7, and σH , Figure 8. σ0 has a
very similar thickness dependence as τ , indicating, that τ
is the main source of the thickness dependence of σ0.

The Hall conductivity, σH , on the other hand, is a
complicated function of d, mainly because of compensat-
ing effect of electron and hole subbands contributions.
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Fig. 6. Thickness dependence of the charge-carrier scattering
relaxation time τ assuming equal roughness (equal U2ρs) of
all slab thicknesses d. In case of diffuse elastic scattering, τ is
independent of the subband index n and electron momentum
k. Experimental points are given by equation (5) where the ex-
perimental conductivities σexp

0 are from reference [18]. Dashed
line is a linear fit to the experimental points.
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Fig. 7. Thickness dependence of the calculated (Eq. (1)) and
low-temperature experimental [18] conductivity σ0. Notice the
remarkable similarity between σ0 and τ which is the conse-
quence of linear thickness dependence of L, Figure 6. Dashed
line is a linear fit through the experimental points. (In Fig. 2
of Ref. [18] σ0 must be multiplied by a factor 100.)

There have been several attempts to relate the Hall
coefficient to the electron density of states, in particu-
lar for disordered metals [25]. Therefore we decided to
test the above relations. In Figure 9 we show the depen-
dence of calculated σ0/τ and σH/τ2 on the position of the
Fermi level for a d = 4 ML slab. We artificially shift the
Fermi energy and calculate the corresponding σ0/τ(εF )
and σH/τ2(εF ). As is seen from this figure, σ0/τ is a rel-
atively smooth function of εF whereas σH/τ2 oscillates
strongly with εF and changes sign: it is negative at the
bottom of each subband, when the charge carriers are
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Fig. 8. The calculated Hall conductivity σH , equation (2),
is compared to the experimental Hall conductivity, σexp
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0 )2. Huge oscillations are the effect of cancellations be-
tween electron and hole contributions.
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Fig. 9. Energy dependence of the calculated electrical con-
ductivity σ0/τ and Hall conductivity σH/τ 2 for a 4 ML thick
slab.

electron-like, and positive at the top of the subbands when
the carriers are hole-like. In between, they are complicated
functions of the Fermi energy and reflect different singu-
larities in the bandstructure. As a consequence, the de-
pendence of RH on εF is given predominantly by σH/τ2.
Comparison of σH/τ2(εF ), Figure 9, and of the density
of states, Figure 4b, shows that for d = 4 ML, there is
no evident relation between RH and the density of states.
Such a relation would be valid only if we had a single
three-dimensional band, i.e. when the charge carriers at
the bottom (top) of the band are electrons with RH < 0
(holes with RH > 0) and at the same time the density of
states is a rising (falling) function of the energy. In case
of several inter-penetrating bands, as is the case of thin
films, such a simple picture breaks down [26–28], as is also
obvious from our results. We also find no obvious relation
between σ0 and the density of states.

4 Comparison with the experiments

In Figures 6 and 7 we compare calculated τ and σ0 with
the experiments. It has been observed experimentally that
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the transport properties of Pb films are almost indepen-
dent of the substrate reconstruction [18]. Therefore, met-
als on Si can be considered to a reasonable first approxima-
tion as free-standing metal films. This is not true for the
first Pb layer, which will be discussed separately below.

Clearly seen in theory and experiments is an approx-
imately linear thickness dependence of σ0 which corrobo-
rates the picture that the scattering is dominated by sur-
face roughness and that the roughness does not change
with film thickness.

We identify several conductivity regions. Below the
percolation threshold at d ∼ 0.8 ML the charge carriers
are localised, the transport is strongly temperature acti-
vated and σ0 is so small that it is of no relevance for our
considerations.

Between the percolation threshold and 1 ML the
Pb films are pseudomorphous, i.e. the lattice constant is
∼10% larger than the corresponding bulk Pb value. We
performed also DFT and conductivity calculations for a
d = 1 ML thick Pb slab with the lateral lattice constant
of a Si(111) substrate and we find that the electrical prop-
erties of a 1 ML film are extremely sensitive to the lateral
lattice constant a. A 10% increase in the lattice constant
changes the metal to an indirect bandgap semiconduc-
tor. The experimental conductivity of a 1 ML film is very
small and has an approximately linear temperature de-
pendence [18], supporting the theoretical conjecture that
the 1 ML Pb(111) films are semiconducting.

Between ∼1 ML and ∼3.5 ML, the annealed films are
amorphous and σexp

0 exhibits a small, almost linear in-
crease with temperature up to ∼100 K, indicating a small
activated contribution. Films with d � 4 ML are crys-
talline and σexp

0 decreases with increasing temperature
(phonons). We could not observe any influence of disorder
on the conductivity of ultrathin films. The experimentally
observed dip in σ0 at 3 ML (see Fig. 7) is fully repro-
duced in our calculation with ideally ordered slabs. It is
related to the electronic bandstructure, but has nothing
to do with disorder in the film. Therefore, it is a pure
quantum-size effect.

The thickness dependence of σ0 is, like τ , ∝ d−1. It is
governed by scattering on the surface or interface rough-
ness – bulk disorder would give a thickness-independent
σ0. The main source of the oscillations of σ0 with d is
the quantisation of the Pb band structure in the direction
normal to the film together with the strong spin-orbit in-
teraction.

Our results for σ0 are consistent with the picture that
the electrons are subject to diffuse elastic scattering at
the surfaces of the films [1,2,4], in agreement with the
original Fuchs-Sondheimer model, but they are at variance
with the model of scattering at surfaces with uncorrelated
roughness, where σ ∝ d2 was predicted [10].

The calculated Hall conductivity is compared to σexp
H

in Figure 8. The agreement is good except for d = 5 ML
where the discrepancy most probably lies in the lifetime
broadening of the electron states [18] which is neglected
in the present analysis.

5 Discussion

Our calculation used for the interpretation of the exper-
imental data is based on a DFT band structure calcu-
lation combined with the Boltzmann transport equation.
The only adjustable parameter, used in the calculation,
is the scattering strength U2ρs. The physical scenario is
described by electronic states in ultrathin films that are
localised in the direction normal to the surface and are
scattered by surface roughness. The electron states form
discrete subbands since the electron coherence length, lim-
ited by scattering in the film bulk, exceeds the film thick-
ness.

The results of the calculation are consistent with the
picture that the electrons are subject to diffuse elastic
scattering on film surfaces [1,2,4] for which σ0 and τ are
proportional to the number of conducting metallic lay-
ers, in our case (d − 1), in agreement with the original
Fuchs-Sondheimer model and with the experiments [18].
The (lateral) mean free path of electrons in Pb ultrathin
films on Si(111) exceeds the Pb bulk lattice constant when
d > 1 ML. According to the Ioffe-Regel criterion [29],
l ∼ 1/kF ∼ ab (ab is the bulk lattice constant), the elec-
trons in d > 1 ML thick films are not localised, and the
use of the Boltzmann transport equation is justified.

The essential difference between the Fuchs-Sondheimer
and the present model is that in the former the electrons
are described by three-dimensional Bloch states whereas
in our approach the electron states are described by two-
dimensional momenta k‖ and discrete subbands. The for-
mer approach is adequate for thick slabs, whereas our
approach is valid for ultrathin slabs when the electron
coherence length exceeds the slab thickness d.

In experiment, no free-standing films can be investi-
gated, i.e. an insulating substrate is always required that
tries to impose its own periodicity on the adsorbed film,
depending on the interface energies, and on lattice mis-
match. For a perfect film, an atomically sharp interface
and a well defined periodicity at the interface are required
(e.g., in form of a superstructure). In the Pb/Si(111) case,
where the lattice mismatch is approximately 10%, no lat-
tice match, apart from the first monolayer, can be ex-
pected. This is the reason for the formation of the amor-
phous films up to 4 monolayers, whose many degrees of
freedom are obviously needed to allow for the growth of
a Pb film with its own lattice constant for thicker layers.
Nevertheless, it seems that the short range order in these
amorphous films is still sufficiently good to allow a com-
parison of conductivity and Hall conductivity calculated
for perfect crystalline order with experimental data ob-
tained in amorphous films. The calculations with perfectly
ordered films even reproduce details of the conductivity as
a function of layer thickness.

As seen from our analysis, the diffuse interface scatter-
ing mechanism still limits the conductivity, even for the
crystalline films at larger d. For crystalline layers the in-
terface to the vacuum is atomically smooth for complete
layers, but can be roughened by adsorption of incomplete
layers, as seen by a reduction in conductivity [24]. These
roughness-induced changes of conductivity, however, are
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small. Therefore, the Pb-vacuum interface does not seem
to provide the main contribution to diffuse scattering for
the crystalline Pb films (the terraces are too large and
their density too small). An electronically still very rough
interface, on the other hand, may exist between the crys-
talline and the amorphous layers. Because of the lack of
order in the amorphous state, this interface scatters at
random in all directions, i.e. it still acts as diffusely scat-
tering interface. Additional contributions to electron scat-
tering from the Si-Pb interface are conceivable.

The single pseudomorphous monolayer of Pb on
Si(111) has a narrow indirect band gap and is thus semi-
conducting, according to the DFT calculations, in agree-
ment with the experiments, where the conductivity has an
approximately linear temperature dependence [18]. This
is not the case for free-standing Pb monolayers, which
correspond to Pb deposited on semiconducting 1 ML Ag-
covered Si(111)(

√
3×√

3) [17], where Pb still has a Fermi
line and is thus, strictly speaking, a metal, but with a very
small conductivity.

6 Conclusions

Our analysis of the charge-carrier scattering and transport
in ultrathin metallic Pb films has shown that they are very
sensitive to the reduced dimensionality of ultrathin layers
resulting in classical and quantum size effects. The relax-
ation time τ and the conductivity σ0 are limited by the
scattering on rough surfaces and are approximately lin-
ear functions of d (classical size effect) with quantum-size
induced deviations from linearity at d = 3, 6 and 8 ML.
The proportionality constant in σ0 ∝ (d − 1) depends on
roughness of the interface to the substrate. The deviations
for d = 3, 6 and 8 ML appear when the Fermi energy co-
incides with a local maximum in the electron density of
states and causes a drop in τ . These deviations are the
analogue of the condition id ≈ jλF /2 (where i and j are
integers and λF the Fermi wave length) in the free electron
model [5,6]. RH is very sensitive to details of the band-
structure and to a large extent insensitive to disorder in
the film and to surface roughness.

As demonstrated in this paper, the charge-carrier
transport is very suitable for investigating the QSE, since
it is to a large extent insensitive to disorder in the film
and is limited by the interface roughness.

The quantum-size-induced oscillations of σH and RH

are strong and originate from partially compensating con-
tributions to the Hall conductivity that emerge from dif-
ferent subbands crossing the Fermi energy. The advan-
tage of RH over σH is that RH is almost insensitive to the
charge-carrier lifetime and consequently to ordering in the
film.

Whereas one ML of free-standing Pb slab is metallic, a
single monolayer of Pb, pseudomorphous with Si(111), is
semiconducting. In both cases, however, the conductivity
and the mean free path are small. The band gap in the
pseudomorphous case is caused by spin-orbit splitting.

The method applied here can be used for other ul-
trathin metallic films, provided the electron coherence

length (or mean free path) is larger than the film thick-
ness. We have shown that the quantum-size effects depend
on the details of the electronic bandstructure and cannot
be treated quantitatively with the free electron models,
in particular in case of heavier metals when the spin-orbit
interaction is strong. This applies also to σH which is very
sensitive to details of the bandstructure.
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